Subiectul III

  1. Se consideră funcția f:\mathbb{R}\to\mathbb{R}, f(x)=x^4-8x^2+16.
  1. Arătați că f'(x)=4x(x-2)(x+2), x\in\mathbb{R}.
  2. Calculați \lim_{x\to+\infty}\frac{f(x)-x^4}{x^2+1}.
  3. Determinați coordonatele punctelor situate pe graficul funcției f, în care tangenta la graficul funcției f este paralelă cu axa Ox.
  1. Calculăm f'(x)x\in\mathbb{R}.

\begin{align*} f'(x)&=(x^4-8x^2+16)' \\&= (x^4)'-(8x^2)'+16' \\&= 4x^3-8\cdot (x^2)' +0 \\&= 4x^3 -8\cdot 2x \\&= 4x^3 -16x \\&= 4x(x^2-4) \\&= 4x(x+2) (x-2) \end{align*}

\begin{align*} \Rightarrow f'(x)= 4x(x+2) (x-2), \forall \ x\in\mathbb{R}. \end{align*}

  1. Calculăm \lim_{x\to+\infty}\frac{f(x)-x^4}{x^2+1}.

\begin{align*} \lim\limits_{x\to+\infty} \displaystyle\frac{f(x)-x^4}{x^2+1} &= \lim\limits_{x\to+\infty} \displaystyle\frac{x^4-8x^2+16-x^4}{x^2+1}\\ \\&= \lim\limits_{x\to+\infty}\displaystyle\frac{-8x^2+16}{x^2+1}\\\\&= \lim\limits_{x\to+\infty} \displaystyle\frac{(-8)\cdot (x^2-2)}{x^2+1} \\\\ &=(-8)\cdot \lim\limits_{x\to+\infty}\displaystyle\frac{x^2-2}{x^2+1} \\\\&\stackrel{l'H}{=}( -8)\cdot \lim\limits_{x\to+\infty}\displaystyle\frac{2x-0}{2x+0}\\\\&=(-8)\cdot \lim_{x\to+\infty}1\\\\&= (-8)\cdot 1\\\\ &=-8 \end{align*}

\begin{align*} \Rightarrow \lim\limits_{x\to+\infty} \displaystyle\frac{f(x)-x^4}{x^2+1}=-8. \end{align*}

  1. De la punctul a. avem că \begin{align*} f'(x)= 4x(x+2) (x-2), \forall \ x\in\mathbb{R}. \end{align*}

Rezolvăm ecuația {f}'(x)=0.

\begin{align*} & f'(x)=0 \Leftrightarrow \\ &\Leftrightarrow 4x(x+2)(x-2)=0\\ &\Leftrightarrow x(x+2)(x-2)=0\\ &\Leftrightarrow x=0 \ sau \ x+2=0 \ sau \ x-2=0\\ &\Leftrightarrow x=0 \ sau \ x=0-2 \ sau \ x=0+2\\ &\Leftrightarrow x=0 \ sau \ x=-2 \ sau \ x=2 \end{align*}

\begin{align*} x_1&=0 \Rightarrow \\ f(0)&= 0^4-8\cdot 0+16 \\ &= 0-0+16 \\&= 16 \\ \end{align*}

\begin{align*} \Rightarrow x_1=0, y_1=16 \end{align*}

\begin{align*} x_2&=2 \\ f(2)&= 2^4-8\cdot 2^2+16 \\&= -32 +16+16 \\&= -32+32 \\&= 0 \\ \end{align*}

\begin{align*} &\Rightarrow x_2=2, y_2=0 \end{align*}

\begin{align*} x_3&=-2 \\ f(-2)&= (-2)^4-8\cdot (-2)^2+16 \\&= 16-8\cdot 4+16 \\&= 16-32+16 \\&= -16+16 \\&= 0 \\ \end{align*}

\begin{align*} &\Rightarrow x_3=-2, y_3=0 \end{align*}

Coordonatele punctelor sunt \begin{align*} x_1=0, y_1=16; x_2=2, y_2=0; x_3=-2, y_3=0. \end{align*}

  1. Se consideră funcția f:(0,+\infty)\to\mathbb{R}, f(x)=\frac{x+2}{x}.
  1. Arătați că \int_{1}^{2}x f(x)\mathrm{d}x=\frac{7}{2}.
  2. Demonstrați că funcția F:(0,+\infty)\to\mathbb{R}, F(x)=x+2\ln x+2015 este o primitivă a funcției f.
  3. Arătați că suprafața plană delimitată de graficul funcției g:(0,+\infty)\to\mathbb{R}, g(x)=\big(f(x)-1\big)\ln x, axa Ox și dreptele de ecuații x=1 și x=e are aria egală cu 1.
  1. Calculăm \int_{1}^{2}x f(x)\mathrm{d}x.

\begin{align*} \int\limits_{1}^{2} x\cdot f(x) \mathrm{d}x &= \int\limits_1^2 x\cdot \displaystyle\frac{x+2}{x}\mathrm{d}x \\ \\&= \int\limits_1^2 (x+2) \mathrm{d}x \\\\&= \int\limits_1^2 x\mathrm{d}x+\int\limits_1^2 2 \mathrm{d}x \\\\&=\displaystyle\frac{x^2}{2}\Big|_1^2+2\int\limits_1^2 \mathrm{d}x \\\\&= \displaystyle\frac{2^2}{2}-\displaystyle\frac{1^2}{2}+2\cdot x\Big|_1^2 \\\\&= \displaystyle\frac{4-1}{2}+2\cdot(2-1)\\\\&= \displaystyle\frac{3}{2}+4-2 \\\\&= \displaystyle\frac{3}{2}+2 \\\\&=\displaystyle\frac{3+4}{2} \\\\&=\displaystyle\frac{7}{2} \\ \end{align*}

\Rightarrow \int_{1}^{2}x f(x)\mathrm{d}x=\frac{7}{2}.

  1. Calculăm F'(x)x\in(0, +\infty).

\begin{align*} F'(x)&= (x+2\cdot \ln x+2015)' \\\\&= x' + (2\cdot \ln x)' +2015' \\\\&= 1+2(\ln x)' +0 \\\\&= 1+2\cdot \displaystyle\frac{1}{x} \\\\&= 1+ \displaystyle\frac{2}{x} \\\\&= \displaystyle\frac{x+2}{x} \\\\&=f(x) \end{align*}

\begin{align*} \Rightarrow F'(x)=f(x),\forall \ x\in (0,+\infty) \end{align*}

Deci funcția F este o primitivă a funcției f.

  1. Calculăm aria.

\begin{align*} \mathcal{A}&= \int\limits_1^e|g(x)|\mathrm{d}x \\&= \int\limits_1^e |(f(x)-1)\cdot \ln x|\mathrm{d}x\\&= \int\limits_1^e \left|\left(\displaystyle \frac{x+2}{x}-1\right)\cdot \ln x\right|\mathrm{ d}x \\&= \int\limits_1^e \left|\displaystyle\frac{x+2-x}{x}\cdot \ln x\right|\mathrm{d}x \\&= \int\limits_1^e \left|\displaystyle\frac{2}{x}\cdot \ln x\right|\mathrm{d}x \\&= \int\limits_1^e 2\cdot \displaystyle\frac{1}{x}\cdot \ln x \mathrm{d}x \\&= \int\limits_1^e 2\cdot \ln x \cdot (\ln x)'\mathrm{d}x \\&= \int\limits_1^e [(\ln x)^2]' \mathrm{ d}x \\&= \ln^2 x\Big|_1^e \\&= \ln^2 e-\ln^2 1 \\&= 1^2-0^2 \\&= 1-0 \\&= 1 \end{align*}

\Rightarrow \mathcal{A}&=1.