Subiectul II

Mai jos găsiți enunțurile problemelor de la Subiectul II, care s-au dat în sesiunea august - septembrie, în data de 29.08.2012, la disciplina matematică, profilul mate - info. Pentru a putea vedea rezolvările complete ale acestor probleme, consultați ghidul nostru. Spor la rezolvarea problemelor! 

  1. Se consideră sistemul de ecuații \begin{cases} & -x+ay+(2a+4)z=1\\ & (a+2)x+ay+(a+1)z=1\\ & (a+1)x+(2a-1)y+3z=2 \end{cases}, unde a\in\mathbb{R}.
  1. Arătați că determinantul matricei sistemului este egal cu 3a^3+9a^2-3a-9.
  2. Determinați valorile reale ale lui a pentru care sistemul este compatibil determinat.
  3. Pentru a=-2, rezolvați sistemul.
  1. Se consideră polinomul f=X^8+\hat{4}X^4+\hat{3}f\in\mathbb{Z}_5[X].
  1. Arătați că a^5=a, pentru orice a\in\mathbb{Z}_5.
  2. Arătați că polinomul f este reductibil peste \mathbb{Z}_5.
  3. Arătați că polinomul f nu are rădăcini în \mathbb{Z}_5.

Textul de mai sus este doar un extras. Numai membrii pot citi întregul conținut.

Obține acces la întregul eBook.

Ca membru al Liceunet.ro, beneficiezi de acces la întregul conținut.

Achiziționează un abonament acum

Deja membru? Log in